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Abstract

Background: Cancer-incidence and mortality-trend analyses require appropriate statisti-

cal modelling. In countries without a nationwide cancer registry, an additional issue is es-

timating national incidence from local-registry data. The objectives of this study were to

(i) promote the use of multidimensional penalized splines (MPS) for trend analyses; (ii)

estimate the national cancer-incidence trends, using MPS, from only local-registry data;

and (iii) propose a validation process of these estimates.

Methods: We used an MPS model of age and year for trend analyses in France over

1990–2015 with a projection up to 2018. Validation was performed for 22 cancer sites and

relied essentially on comparison with reference estimates that used the incidence/health-

care ratio over the period 2011–2015. Alternative estimates that used the incidence/mor-

tality ratio were also used to validate the trends.

Results: In the validation assessment, the relative differences of the incidence estimates

(2011–2015) with the reference estimates were <5% except for testis cancer in men and

< 7% except for larynx cancer in women. Trends could be correctly derived since 1990 de-

spite incomplete histories in some registries. The proposed method was applied to estimate
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the incidence and mortality trends of female lung cancer and prostate cancer in France.

Conclusions: The validation process confirmed the validity of the national French esti-

mates; it may be applied in other countries to help in choosing the most appropriate na-

tional estimation method according to country-specific contexts. MPS form a powerful

statistical tool for trend analyses; they allow trends to vary smoothly with age and are

suitable for modelling simple as well as complex trends thanks to penalization. Detailed

trend analyses of lung and prostate cancers illustrated the suitability of MPS and the epi-

demiological interest of such analyses.

Key words: incidence, mortality, penalized splines, generalized additive models, trend analyses, cancer, cancer

registry

Introduction

Detailed incidence and mortality-trend analyses are key

elements in epidemiological surveillance programmes, es-

pecially in the cancer field, which benefits from many

population-based registry incidence data.1 Trends accord-

ing to year of diagnosis or birth cohort detailed by age may

be linked to the dynamics of known risk factors or raise hy-

potheses about emerging unconfirmed factors.

For such refined trend analyses, appropriate modelling

is required and the general additive model (gam) frame-

work as developed by Wood2,3 is an appealing opportu-

nity, especially multidimensional penalized-regression

splines (MPS). MPS are flexible models that provide

smooth rates and allow the trends to vary with age; they

are suitable for modelling simple as well as complex

trends. MPS are implemented in the R package mgcv and

are now a mature tool, both theoretically and numeri-

cally.3,4 MPS thus represent a promising modelling per-

spective for cancer-incidence and mortality-trend analyses,

which are still rarely used.

Besides this modelling aspect, when the objective is to

study national trends, the many countries in which cancer

registries cover only a part of the population face the issue

of estimating national incidence from local data.1 National

cancer incidence (IN) is then usually estimated by correct-

ing registry-area incidence (IR) using the ratio between na-

tional and registry-area mortality: IN ¼ IR*MN/MR ¼
MN*IR/MR. Different versions of such I/M approaches

were proposed.1,5–8 An additional common issue is that

several registries may not have historical data and, in this

case, only recent estimates are usually derived.1 Few meth-

ods have attempted to estimate national trends from local-

registry data in such cases; one may cite the specific I/M

approaches developed in France6,7,9 or in Spain.5

Although I/M approaches proved very useful1,5–8 and

valid,10 they have some limitations. First, with histological

codes not being available in mortality data, I/M

approaches are not applicable for various hematologic ma-

lignancies or cancer histological subtypes. Second, mortal-

ity became less informative about the incidence for a few

cancers (thyroid, melanoma, prostate, etc.). Third, the

Key Messages

• Detailed cancer-incidence and mortality-trend analyses are essential to gain epidemiological insights but require ap-

propriate statistical modelling.

• Multidimensional penalized splines (MPS) form a powerful statistical tool for incidence and mortality-trend analyses.

MPS allow the trends to vary smoothly with age and may model simple as well as complex trends through penaliza-

tion, which provides the ‘best’ trade-off between fit and smoothness.

• In countries without a nationwide cancer registry, an additional issue is to produce and validate national estimates

from local data.

• In the French context, it is possible to obtain valid national cancer-incidence trends directly from local-registry data

that cover 20% of the population, without any correction and including registries with incomplete histories.

• The validation process is based on comparison with reference estimates that uses health-care data for recent esti-

mates and with alternative estimates that use mortality for historical trend. This validation process may be applied in

other countries to help in choosing the most appropriate national estimation method according to each country’s spe-

cific context.
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MN/MR correcting factor inflates the variability of the IN
estimate, especially when mortality is low, and, fourth,

confidence intervals may be difficult to derive. In France,

as coverage of the registry area is increasing, these limita-

tions led us to question the use of an I/M approach to esti-

mate the national cancer incidence.

For all these reasons, we adopted a new method to esti-

mate the French national cancer-incidence and mortality

trends over 1990–2018. The present work therefore had

three objectives:

i. to promote and illustrate the use of MPS for incidence

and mortality-trend analyses,

ii. to propose a method to estimate the national cancer-

incidence trend, using MPS, from only local-registry

data,

iii. to propose a validation process for these national inci-

dence estimates, based on comparison with alternative

estimates obtained using health-care or mortality data.

The paper focuses on the examples of lung cancer in

women and prostate cancer; however, validation results

are provided for 22 cancer sites in the Supplementary data,

available at IJE online.

Methods

Incidence, mortality and population data

Incidence data from 1975 to 2015 were provided by the

French cancer registries, which cover 19 to 22 districts

(Départements), depending on the cancer site, i.e. 21–24%

of the French population. The geographical area covered

by these districts will be referred to herein as the ‘registry

area’. Note that several registries do not have historical

data (first available year ranging from 1975 to 2009;

Supplementary Figure S1, available as Supplementary data

at IJE online) and thus cancer incidence in this registry

area is fully observed only since 2009. French national

mortality from 1975 to 2015 was provided by the Centre

d’épidémiologie sur les causes médicales de décès (CépiDc-

Inserm). The person-years were calculated by sex, district,

annual age and year (1975–2018) from official population

data. To analyse trends over 1990–2018, data from 1985

were used for incidence (to stabilize estimation in 1990)

and from 1975 for mortality (to estimate long-term cohort

indicators not presented here). Note that 2018 estimates

thus result from a short projection. For prostate-cancer in-

cidence, though, no projection was performed due to the

high uncertainty about its short-term evolution (the last

year shown is 2015). In this paper, the year will refer to the

year of diagnosis for incidence (respectively death for mor-

tality) and the cohort will refer to the year of birth.

Health-care data for external validation

For each cancer site and for the period 2011–2015, three

indicators were derived from the hospitalization data and

health-insurance data (agreements for full reimbursement of

medical costs)11: (i) number of newly hospitalized patients

(i.e. not hospitalized in the 2 previous years, H); (ii) number

of patients who obtained a first agreement from their health

insurance (A); and (iii) number of patients newly hospitalized

or who obtained a first agreement (HA).

Cancer sites studied

Twenty-two cancer sites were studied (Supplementary

Table 1, available as Supplementary data at IJE online)

and all analyses were performed separately by sex and site.

The paper focus on the examples of female lung cancer and

prostate cancer; however, validation results are provided

for all cancer sites in the Supplementary data, available at

IJE online.

Introduction to MPS and the model for national

mortality-trend analyses, 1990–2018

National mortality rates by year and annual age were mod-

elled in a Poisson regression by an MPS of age and year,

called tensor and denoted by te a; yð Þ)2,3:

Da;y � Poisson la;y:PYa;y

� �
and Log la;yð Þ ¼ teða; yÞ;

Model 1

where Da;y is the number of cancer deaths in France (age a,

year y), la;y is the mortality rate and PYa;y is the person-

years. te a; yð Þ is derived from two functions, namely f(a)

and g(y) (e.g. splines) called the marginal basis, which rep-

resents the effect of age and year, respectively; te a; yð Þ is

obtained by multiplying term by term these marginal bases

(tensor product) and has M*L parameters if the bases have M

and L parameters, respectively (see Appendix A1 for details).

MPS allow modelling the potentially complex effects of

age and year (non-linear effects and interactions). This

model has many parameters and thus, to avoid overfitting,

these parameters are estimated by maximizing a penalized

likelihood, which makes a trade-off between the fit and the

smoothness of the rates obtained. This trade-off is con-

trolled by smoothing the parameters that are estimated au-

tomatically. In Model 1, there are two smoothing

parameters, one for each direction of age and year, so that

the predicted rate at a fixed age varies smoothly with year

and reciprocally.3 If the penalization is strong, then corre-

sponding effects will be linear.

An usual choice for marginal bases is restricted cubic

splines.12 One general principle when using MPS is to
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choose a number of knots of these splines slightly higher

than deemed necessary and let the penalization avoid over-

fitting.3 Knots were placed every 5 years for g(y) and every

10 years for f(a) (see Supplementary Table 2, available as

Supplementary data at IJE online).

Model to estimate national incidence trends,

1990–2018

To estimate the national incidence in France, we fitted the

following model using data from all registries:

Kj;a;y � Poisson kj;a;y:PYj;a;y

� �
and

Log kj;a;y

� �
¼ tekða;yÞþ uj; with uj �N 0;r2

� �
:

Model 2

In this model, Kj;a;y is the number of cancer cases (dis-

trict j, age a, year y), kj;a;y is the incidence rate, PYj;a;y is

the corresponding person-years and uj is the district ran-

dom effect. r represents the incidence variability between

the districts. The knots were chosen as in Model 1, except

for breast, prostate and ‘all cancers’, which required a

higher flexibility (see Supplementary Table 2, available as

Supplementary data at IJE online). R codes for Model 1

and Model 2 are available at https://github.com/uhryzoe/

MPS_IncidenceTrends.

With a district random effect, Model 2 is naturally

designed to infer national incidence from a sample of dis-

tricts, including correct variance estimation (the lower the

incidence varies between districts, the better the precision

of the national estimates). National incidence is estimated

as the marginal incidence, i.e. the average incidence over

the distribution of the district random effects:

k̂
N

a;y ¼ exp t̂ek a; yð Þ
� �

:exp
r̂2

2

� �
: Formula 1

This method of estimating national incidence relies on

three fundamental assumptions:

i. National incidence may be currently estimated from

registry incidence data; this requires that districts with

a registry be a random sample of French districts and,

thus, that incidence in the registry area be close to the

whole-of-France incidence (IR � IN).

ii. This equality IR � IN holds over the whole study pe-

riod; i.e. the incidence trend in the registry area is iden-

tical to the incidence trend in the whole of France

(trend IR � trend IN).

iii. The incidence trend in the registry area is correctly esti-

mated despite incomplete histories in some registries.

Validation of the method

Validation of the first assumption: national incidence may

currently be estimated from the incidence data of registries

In France, there is no gold standard for national incidence

estimation. However, accurate national estimates may be

obtained using health-care (HC) data, which are more valu-

able proxies of incidence11,13 than mortality.14 We derived

such national estimates within the context of district-level

cancer-incidence prediction in France, using a calibration

model that proved to provide unbiased estimates.11,15 This

model is detailed in Appendix A2 (Model 3); briefly, the

HC/I ratio is first modelled according to age in the registry

area and this age-specific ratio is then applied to the age-

specific number of the national HC data to derive national

incidence. However, due to the lack of history of HC data,

this approach could not be used over the whole study period

and we thus focused on a recent period, namely 2011–2015.

Three distinct national estimations, considered here as refer-

ence estimates, were carried out with the calibration model

using the HA/I, H/I or A/I ratio, respectively. The compari-

son of our national estimates (Formula 1) with these refer-

ences is the key validation element.

Furthermore, for a correct variance estimation of the

national incidence obtained from Model 2, the districts

with a registry have to be a random sample from all French

districts in terms of incidence rates (i.e. they have to spread

across the range of all possible values). This assumption

may be indirectly examined by looking at the distribution

over French districts of the HC rates.

Validation of the second assumption: trend IR � trend IN

The incidence trend being unobservable (even in the regis-

try area, due to incomplete histories), this second assump-

tion was indirectly assessed by comparing graphically the

mortality trends in France and in the registry area from

1990 to 2015.

Validation of the third assumption: trend IR correctly

estimated despite incomplete histories

Because several registries have incomplete histories (see

Supplementary Figure 1, available as Supplementary data

at IJE online), there is no straightforward way to verify

that the incidence trend in the registry area is well esti-

mated from Model 2. Nevertheless, as a sensitivity analy-

sis, we performed an alternative estimate of the trend IR

using a model that draws information from mortality to

predict the incidence in each district (Model 4; see

Appendix A3), thus providing more reliable historical esti-

mates for IR. Model 4 provides I/M ratios that are specific

to each district and these ratios are then applied to the

district-specific mortality to predict the incidence. The
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derivations of the IR estimates using Model 2 and Model 4,

which are compared here, are detailed in Appendix A3.

Implementation

All analyses were performed in R, version 3.4.3, using the

gam function from the package mcgv, version 1.8–23.3

The restricted maximum-likelihood criterion was used to

estimate the smoothing parameters3(p.262).

Results of the validation assessment

First assumption: national incidence may be

currently estimated from the incidence data of

registries

Regarding the first assumption, let us first illustrate the

way the reference estimates are obtained using the HA in-

dicator. Table 1 shows the observed number of HA cases

and incident cases in the registry area over the period

2011–2015. The observed number of HA cases overesti-

mates the number of incident cases with the ratio HA/

I¼ 1.05 for female lung cancer and 1.07 for prostate can-

cer. As shown in Supplementary Figure 2, available as

Supplementary data at IJE online, this ratio varies only

slightly with age in female lung cancer, but varies from 0.8

to 1.5 at age 90 for prostate cancer, which means that, at

age 90, there are 1.5 more HA cases than incident cases.

Applying these ratios by age to the numbers of national

HA cases by age leads to annual estimates of 11 792 female

lung-cancer-incidence cases and 47 769 prostate-cancer-

incidence cases (see details in Appendix A2).

Table 2 presents the number of cases estimated in

France over the period 2011–2015 from Model 2 com-

pared with the three reference estimates (H/I, A/I or HA/I

method), which is the key validation element. The pro-

posed method is labelled the ‘new’ method in this table. In

addition to lung- and prostate-cancer examples, the site ‘all

cancers’ is also presented here. Relative differences were

small, at around �4% for lung cancer in women, þ4% for

prostate cancer and <2% for the ‘all cancers’ site.

Supplementary Table 3, available as Supplementary data

at IJE online, presents these results for the 22 cancer sites

studied and Supplementary Table 4, available as

Supplementary data at IJE online, shows the correspond-

ing age-standardized incidence rates with 95% confidence

interval (CI). Overall, the relative differences between the

new and the reference estimates were small. The absolute

values of these relative differences as compared with the

mean reference were <5% except for testis cancer in men

(12%) and for larynx cancer (17%, although numbers are

very small), kidney cancer (7%) and stomach cancer (6%)

in women. Details by age may be found in Supplementary

Figure 3, available as Supplementary data at IJE online,

and the differences did not exhibit strong age patterns.

To examine whether districts with a registry may be seen

as a random sample from French districts in terms of inci-

dence rates, Supplementary Figure 4, available as

Supplementary data at IJE online, presents the cancer HA

rate by district in increasing order, those with a cancer regis-

try being indicated in red. Except for testis cancer and larynx

cancer in women, this figure shows that the assumption is

reasonable and is reassuring regarding the variance accuracy.

Second assumption: incidence trends are similar

in the registry area and in the whole of France

The second assumption was indirectly examined by com-

paring the mortality trends. Supplementary Figure 5, avail-

able as Supplementary data at IJE online, shows that the

trends in age-standardized mortality rates in the registry

area and the whole of France are overall similar and often

the two curves coincide.

Third assumption: incidence trends in the registry

area may be correctly estimated despite

incomplete histories

Supplementary Figure 6, available as Supplementary data

at IJE online, shows the incidence trends in the registry

area from 1985 to 2015 (age-standardized rates) as esti-

mated by the proposed method and by the alternative

method that uses mortality. Before 1990 (dotted vertical

line), some differences were observed for a few cancer sites;

afterwards, the trends were similar for all cancer sites, sug-

gesting that Model 2 may be used to estimate the trends

from 1990 despite incomplete histories.

Table 1 Use of HC/I ratio to estimate national incidence (reference estimates): illustration with HA indicator, France,

2011–2015—female lung cancer and prostate cancers (annual numbers)

Registry area France

Cancer site Observed HA cases Observed incident cases All age HA/I ratio Observed HA cases Estimated incident casesa

Lung, female 2342 2223 1.05 12 396 11 792

Prostate 10 587 9881 1.07 51 316 47 769

aNational estimation obtained with Model 3 (see Appendix A2).
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Application

The application presents detailed national incidence and

mortality-trend analyses for female lung cancer and pros-

tate cancer in France (1990–2018). The rates are expressed

per 100 000 person-years and the reference population

used for age-standardization is the world population.16

Figure 1 shows the national mortality and incidence

rates by age and year as obtained from Model 1 and

Model 2, respectively. This figure illustrates that MPS

provide smooth surfaces in both directions of age and year,

and may model simple surfaces (e.g. female lung-cancer in-

cidence) as well as complex surfaces (e.g. prostate-cancer

incidence). The goodness of fit of such models is shown in

Supplementary Figure 7, available as Supplementary data

at IJE online, for incidence (prostate-cancer example) and

Figures 8, available as Supplementary data at IJE online,

for mortality (female lung-cancer example). Figure 1 was

obtained from predicted rates by annual age and year, but,

Table 2 New method compared with the reference (HA/I, A/I or H/I): estimated annual numbers of cancer cases and relative dif-

ferences, France, 2011–2015—female lung cancer, prostate cancer and ‘all cancers’

Estimated annual numbers of cases Relative differences (%)a

Cancer site New HA/I A/I H/I Meanb HA/I A/I H/I Meanc

Lung, female 11 251 11 792 11 582 11 873 11 749 �5 �3 �5 �4

Prostate 50 030 47 769 47 310 48 624 47 901 5 6 3 4

All cancers, male 201 293 198 061 194 218 198 413 196 897 2 4 1 2

All cancers, female 163 319 163 878 162 704 163 327 163 303 0 0 0 0

aRelative difference ¼ 100*(new-reference)/reference.
bMean of the three reference estimates HA/I, A/I and H/I.
cRelative difference as compared with the mean of three reference estimates HA/I, A/I and H/I.
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Figure 1 3D plot of national incidence (1990–2018a) and mortality (1975–2018) rates by age and year, France, female lung cancer and prostate cancer.
a1990–2015 for prostate-cancer incidence.

International Journal of Epidemiology, 2020, Vol. 49, No. 4 1299

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/49/4/1294/5896242 by guest on 18 O

ctober 2024

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa078#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa078#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa078#supplementary-data


obviously, as a birth cohort equals the year minus the age,

the predicted rates are actually available by age, year and

cohort. These rates may then be summarized by age-

standardized rates (Figure 2) or described precisely by

cross-sectional cuts of Figure 1 in the age, year or cohort

direction (Figures 3 and 4).

Figure 2 shows the trends in age-standardized incidence

and mortality rates from 1990 to 2018 (see also

Supplementary Table 5, available as Supplementary data

at IJE online). Both indicators increased dramatically in fe-

male lung cancer, especially the incidence. For prostate cancer,

mortality decreased, especially in recent years, whereas the in-

cidence increased dramatically up to year 2005, then declined.

This synthetic picture may be refined by looking at the

trends in the rates by age, year or cohort (Figures 3 and 4).

For female lung cancer (Figure 3), the incidence and

mortality-trend patterns were overall consistent. Figure 3a

and b shows the incidence and mortality rates by age for

different years (transversal age curves); although this repre-

sentation is very common, these curves do not represent

properly the lifetime ageing effect. For instance, the inci-

dence age curve for the year 2015 shows similar rates in

women aged 60 and 80; however, this curve does not com-

pare risks at different ages of the same women (the former

were born in 1955 and the latter in 1935). A proper repre-

sentation of lifetime experience is to plot rates by age for

different birth cohorts (longitudinal age curves) as in

Figure 3c and d. These are key figures to describe the prog-

ress of cancer risk over life for a given cohort and the way

this risk has evolved over successive cohorts (i.e. trends).

Figure 3c and d show that, for female lung cancer, what-

ever the birth cohort, the incidence rates and mortality

rates increased with age over the lifetime (including ages

60–80, contrarily to what Figure 3a may suggest).

Furthermore, these figures show that these rates increased

considerably over successive cohorts. To complement these

key figures and focus on the trends, the rates may be plot-

ted by year at different ages (Figure 3e and f) or, more ad-

vantageously, by cohort (Figure 3g and h) using log-scales

for easier interpretation. The latter figures show a marked

increase in the incidence and mortality rates between the

cohorts from 1940 to nearly 1960, followed by a slow-

down or even stabilization for women born after that.

The incidence and mortality trends diverged for pros-

tate cancer (Figure 4). The mortality decreased regularly at

all ages (Figure 4f and h) with a slightly more pronounced

decrease in older ages and recent years. Contrariwise, the

incidence trends were especially complex. Figure 4a shows

marked changes in transversal age curves, with the 2005

age curve standing high above all others; however, the un-

derlying phenomena are not easy to understand from this

figure. Once again, Figure 4c makes the picture clearer: the

longitudinal age curves evolved strongly with birth

cohorts; there was a nearly 10-year shift towards younger

ages between the successive cohorts of 1920, 1930 and

1940. In these cohorts, the incidence peaked at ages 82, 74

and 66, respectively (and thus these peaks occurred in the

years 2002, 2004 and 2006). In Figure 4c, the period
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Figure 2 Trends in incidence and mortality age-standardized rates (log-scale), France, 1990–2018*. Female lung cancer (a) and prostate cancer (b).

*1990–2015 for prostate-cancer incidence.
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Figure 3 Trends in incidence and mortality rates by age, year and birth cohort, female lung cancer, France, 1990–2018.

International Journal of Epidemiology, 2020, Vol. 49, No. 4 1301

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/49/4/1294/5896242 by guest on 18 O

ctober 2024



40 50 60 70 80 90

0
50

0
10

00
15

00

Age

Year:
1990
2000
2005
2010
2015

Age−specific rate for different years, Incidence (a)

In
ci

de
nc

e 
ra

te

40 50 60 70 80 90

0
20

0
60

0
10

00

Age

Year:
1990
2000
2005
2010
2015
2018

Age−specific rate for different years, Mortality (b)

M
or

ta
lit

y 
ra

te

40 50 60 70 80 90

0
50

0
10

00
15

00

Age

Cohort:
1910
1920
1930
1940
1950
1960

Age−specific rate for different cohorts, Incidence (c)

Period 1995−2005

In
ci

de
nc

e 
ra

te

40 50 60 70 80 90

0
20

0
60

0
10

00

Age

Cohort:
1910
1920
1930
1940
1950
1960

Age−specific rate for different cohorts, Mortality (d)

M
or

ta
lit

y 
ra

te

1990 1995 2000 2005 2010 2015

1
5

50
50

0

Year

Age: 45 50 60 70 80

Trends by year for different ages (log−scale), Incidence (e)

In
ci

de
nc

e 
ra

te

1990 1995 2000 2005 2010 2015

0.
2

1.
0

5.
0

50
.0

50
0.

0

Year

Age: 45 50 60 70 80

Trends by year for different ages (log−scale), Mortality (f)

M
or

ta
lit

y 
ra

te

1910 1930 1950 1970

1
5

50
50

0

Cohort

Age: 45 50 60 70 80

Trends by cohort for different ages (log−scale), Incidence (g)

In
ci

de
nc

e 
ra

te

1910 1930 1950 1970

0.
2

1.
0

5.
0

50
.0

50
0.

0

Cohort

Age: 45 50 60 70 80

Trends by cohort for different ages (log−scale), Mortality (h)

M
or

ta
lit

y 
ra

te

Figure 4 Trends in incidence and mortality rates by age, year and birth cohort, prostate cancer, France, 1990–2018a.
a1990–2015 for prostate-cancer incidence.
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1995–2005 over which prostate-specific antigen (PSA)

screening particularly increased in France is highlighted.

The trends by year (Figure 4e) complement this picture and

show that the incidence increased dramatically up to 2005

(especially since 1998) in all ages, except the oldest, and

then declined; this decline has slowed down, though, in the

most recent years for ages 70–80.

Discussion

Validation of the French national incidence

estimates

We proposed an approach to estimate the national

cancer-incidence trends using only local-registry data.

The validity assessment confirmed the acceptability of the

main assumptions in France. The results demonstrate that

it is possible to obtain valid national incidence estimates

with a registry area that represents only 20% of the popu-

lation, without the need for correction. The key condition

is that the district cancer incidence should have the same

mean and variability within the registry area and the

whole country. In addition, trends could be estimated since

1990 despite incomplete histories in some registries.

Because it does not use mortality, this methodology could

also be applied to estimate the incidence for 22 malignant

hemopathies and for various histological subtypes.17

Validation studies for national incidence estimations are

scarce because there is no gold standard. An extensive exter-

nal validation of the I/M method previously used in France

was carried out for 22 cancer sites using HC data.13 The accu-

racy of these I/M estimates was similar to those obtained here

with the proposed method. Recently, Antoni et al.18 assessed

the various methods used in GLOBOCAN to estimate the fu-

ture national incidence of 25 cancer sites taking the Norway

incidence as the gold standard and mimicking a subnational

registry area. However, this validation process is not suitable

in a country without a nationwide cancer registry. We pro-

posed here a comprehensive validation process, using exten-

sively external data to validate recent national estimates and

their trends. In the era of big data, the availability of HC data

has increased considerably over the last decade, offering the

possibility of external validation in many countries.

Suitability of MPS for incidence and mortality-

trend analyses

MPS and more generally penalized-regression splines are

still rarely used for trend analyses, although an unpenal-

ized version was proposed 30 years ago12 and then various

penalized versions for projecting all-cause mortality or

cancer incidence or mortality.19,20

Yet, MPS present several advantages for trend analyses,

as illustrated on the lung- and prostate-cancer examples

(Figures 1–4): (i) they allow age and year to be analysed as

continuous variables, which avoids the loss of information

due to categorization; (ii) they account for non-linearity

and age–year interactions, as exemplified in the analyses of

prostate-cancer incidence in which MPS managed to catch

the complex age–year interaction; (iii) they may model

simple as well as complex trends, the smoothing parameter

estimation acting as a model-selection procedure; (iv) they

provide smooth estimates according to year and age, and

thus also birth cohort21; (v) the MPS used here, being

parametric-regression splines, rather than smoothing

splines,22 allow direct derivation of predictions and CIs

from the parameters and their variance–covariance matrix.

When using MPS, only the marginal bases have to be

specified. Restricted cubic splines is an usual choice, although

other relevant choices are possible, e.g. thin-plate splines3; in

addition, restricted splines are well adapted for short projec-

tions, since they are constrained to be linear beyond the

boundary knots. Other types of penalized splines such as the

P-splines proposed by Eilers and Marx could also be used.23

A general principle when using MPS is to choose a slightly

higher number of knots for the splines than the number

deemed necessary and let penalization avoid overfitting. The

choices regarding the knots (number and location) are thus

less critical in the penalized than in the unpenalized frame-

work.3,24 A detailed discussion of these aspects may be found

in these two references. In the case of projection, the last

knot for g(y) may be located 5 years before the last observa-

tion, as done here, to stabilize the projection.

In the literature, age-period-cohort (APC) models are

often used for incidence and mortality-trend analyses, with

variables treated as qualitative or continuous varia-

bles.12,21,25–27 APC models attempt to decompose

Log ka;y;½c�
� �

as f að Þ þ gðyÞ þ hðcÞ (c being the birth cohort)

but, as p¼ aþ c, this decomposition raises identifiability

and interpretation issues.12,28 Here, we were interested in

getting smooth estimates of this rate rather than decom-

posing it. In this ‘smoothing’ perspective, APC models us-

ing univariate penalized splines may be also implemented

with the R package mgcv (the non-identifiability being

handled in an internal procedure,3 p. 233). Penalized APC

models share with MPS models the advantages of penaliza-

tion and are reduced to age-cohort (AC) or age-period (AP)

models in case of strong penalization, which is an interest-

ing feature. However, as illustrated by the prostate-

incidence analysis shown in Supplementary Figure 7, avail-

able as Supplementary data at IJE online, the APC may re-

main too constrained to fit very complex trends and, in

such cases, it is difficult to figure out which constraints are

responsible for the lack of fit (e.g. underestimation at ages
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>80 in 2015). Furthermore, we also preferred MPS to pe-

nalized APC models because they are identifiable and they

conform to the fact that the incidence or mortality rates

only have two dimensions and not three (cohort equals

year minus age), which is a major advantage in our view.

Nevertheless, a comprehensive simulation-based study

comparing MPS and penalized APC models would be in-

teresting. Note that we used an MPS model of age and year

rather than of age and cohort, because the (a, y) surface is

fully observed whereas the (a, c) surface is only observed

on a diagonal band, this unbalanced design being obvi-

ously less favourable for the estimation procedure.

From a more general perspective, MPS constitute a gen-

eral regression approach that is convenient for many con-

texts, including survival-trend analyses,29 spatio-temporal

smoothing30 or modelling of seasonal phenomena using a

cyclic basis3 (p. 371).

Epidemiological interest of detailed trend

analyses

The two cancer sites presented here contrast highly in

terms of epidemiological pattern and context; yet, an MPS

model allowed the trends for both sites to be described pre-

cisely (Figures 3 and 4). This information may be linked to

the dynamics of known or suspected risk factors, supports

hypotheses about factor contribution and allows refined

epidemiological interpretations.

A dramatic increase in female lung-cancer incidence

and mortality was observed, especially among women

born from 1940 to �1960; this increase slowed down

among women born afterwards (Figure 3g and h). This

dramatic increase may be strongly linked with the impor-

tant rise in tobacco consumption by women since the

1950s, which massively involved women born from 1940

to 1960.31 In light of the present findings, it is likely that

this trend will continue among these generations of heavy

smokers as women get older. The slowdown in cohorts

born after 1960 (observed up to age 55) may be related to

the slowdown observed in tobacco consumption since

2000 in women aged 40–44 (see Figure 2 from Hill

et al.31). Furthermore, as expected for such a lethal cancer

as lung cancer, the trends in incidence and mortality were

very similar, though the results stem from completely

separate data; this shows the reliability of MPS.

Regarding prostate cancer, the mortality decreased

whereas the incidence increased markedly up to 2005 be-

fore declining. The detailed incidence trends were complex

but easier to figure out by looking at the longitudinal age

curves in successive cohorts (Figure 4c). Although other

risk factors may have contributed to the marked changes

observed, the massive development of PSA screening is

probably largely responsible for these evolutions.32 Indeed,

men have been offered PSA screening since the late 1990s

or early 2000s in France, so all cohorts were impacted

from then onwards. In the short term, screening increases

incidence and advances both the year and the age at

diagnosis; in the long term, screening removes previously

early-detected cancers from upcoming incidence. These

phenomena are clearly illustrated by Figure 4c, which

shows an important age shift in the longitudinal age curves

towards younger ages; for cohorts from 1920 to 1940,

these curves reached a peak before a sharp decline. These

declines started in around 2005 and result probably from

the long-term effects of former screenings plus a stability

or decrease in screening practices.33 Regarding mortality,

the observed decrease resulted probably from a decrease in

the incidence of unfavourable cases due to early detection

combined with the improvement in cancer treatment.

Conclusion

The proposed method provided valid national incidence-

trend estimates in France. The validation process may be car-

ried out in any country where exhaustive HC data are avail-

able and may help in choosing the most appropriate national

estimation method for each country’s specific context.

Incidence and mortality-trend analyses for lung and

prostate cancers illustrated the suitability of MPS for such

analyses and the epidemiological interest of providing de-

tailed results by age and year or age and birth cohort.

MPS form a powerful statistical tool for incidence, mor-

tality and survival-trend analyses. For those not familiar

with penalization, some investment is needed to become

comfortable with its theory and practice; afterwards, MPS

and, more generally, penalized-regression splines will

prove easy to implement and very useful.

Supplementary data

Supplementary data are available at IJE online.
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Appendix

A1. Construction of a tensor product from
the marginal bases

The tensor product te a; yð Þ of the marginal bases
f ¼ fmð Þm¼1:M of age and g ¼ glð Þl¼1:L

of year is

obtained by a multiplication term by a term of the two
bases:

te a; yð Þ ¼
P

m

P
l bl;m:fm að Þ:glðyÞ,

where

bl;m

� �
l¼1::L;m¼1::M

are the M � L parameters to be estimated:

For illustration, let’s consider simple quadratic bases
for both age and year, and start the parameter index-
ation at 0 for clear interpretation; then:

te a; yð Þ ¼ b0;0 þ b1;0:a þ b2;0:a
2þ

þ b0;1:y þ b1;1:a:y þ b2;1:a
2:y

þ b0;2:y
2 þ b1;2:a:y

2 þ b2;2a2:y2:

A2. Validation of the first assumption:
method to estimate national incidence using
the HC/I ratio, period 2011–2015

Here, we present briefly the method detailed and vali-
dated in the paper by Chatignoux et al.11 (see https://
github.com/echatignoux/CalibInc for R codes and tu-
torial). The analysis concerned data aggregated over
the period 2011–2015 by district and 5-year age clas-
ses. For simplicity, we will use a unique notation HC
here to refer to either the HA, H or A indicator. The
following model was used, ai being the central age of
age class i:

HCj;ij Kj;i � Poisson ðqj;i : Kj;i Þ and

Log qj;ið Þ ¼ sðaiÞ þ bj; with bj � N 0;r2
HC:I

� �
;

Model 3

where LogðKj;iÞ is an on offset in the model, q repre-
sents the HC/I ratio, s is a thin-plate spline of age with
as many knots as the number of age classes and bj is a
district random effect.

The reference national incidence estimations for age
class i are then derived as:

k̂
FR

i ¼
K^FR

i

PAFR
i

; with K̂
FR

i ¼ HFR
i =exp ŝ aið Þ þ r2

HC:I=2
� �

;

A3. Validation of the third assumption:
alternative method to estimate incidence in
the registry area from 1990 to 2018 using
mortality

For an alternative estimate of the incidence trend in
the registry area, the I/M ratio was modelled using
data from all registries from 1985 to 2015, aggregated
by year y, district j and 5-year age classes i (centred on
age ai). Mortality was previously and separately
smoothed in each district using a tensor of age and
year. The model is:

Kj;i;yjD̂j;i;y � Poisson cj;i;yD̂j;i;y

� �
and

Log cj;i;yð Þ ¼tec ai;yð Þþ�j, with �j�N 0;r2
I:M

� �
: Model 4

In this model, D̂j;i;y is the estimated number of
deaths from preliminary smoothing and LogðD̂j;i;yÞ is
an offset, c is the I/M ratio, tec ai; yð Þ a tensor of age
and year, and �j a district random effect. For this
analysis, except for nervous central-system cancers,
ages �20 were excluded to avoid modelling the I/M
ratio where the incidence and mortality are almost
zero and the ratio I/M is hardly defined (or ages�15
for testis cancer, thyroid cancer and Hodgkin lym-
phoma). The district effect was not entered into the
model for thyroid cancer and testis cancer that had
mortality rates <0.5 per 100 000 person-years.

Derivation of incidence in the registry area with

the proposed method (from Model 2) and with an

alternative method using mortality (from Model 4)

The incidence in the registry area was estimated by
summing the estimates of all districts:

K̂
R

i;y ¼
X

j
K̂j;i;y

� �
;

where K̂a;j;y ¼ exp t̂ek a; yð Þ þ ûj

� �
:PYj;a;y for the pro-

posed method, using parameters from Model 2, or

K̂j;i;y ¼ exp t̂ec ai; yð Þ þ �̂ j

� �
:D̂j;i;y for the alternative

method, using parameters from Model 4.
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