Documentation for
 Sample Size for a Cross-Sectional, Cohort, or Clinical Trial Studies

Kevin M. Sullivan, PhD, MPH, MHA: cdckms@sph.emory.edu
Minn M. Soe, MD, MPH, MCTM: msoe@sph.emory.edu

This module calculates sample size for a cross-sectional study, a cohort study, or a clinical trial. The data input screen is as follows:

Calculate	Sample Size for Cross-Sectional \& Cohort Studies		
	Two-sided confidence level(\%)	25	(1-alpha) usually 95\%
Clear	Power (1-beta or \% chance of detecting)	80	Usually 80%
	Ratio of Unexposed to Exposed in sample	1.0	For equal samples, use 1.0
	Percent of Unexposed with Outcome	5	Between 0.0 and 99.9
	Please fill in 1 of the following. The others will be calculated.		
	Odds ratio		
	Percent of Exposed with Outcome		Between 0.0 and 99.9
	Risk/Prevalence Ratio		
	RiskPrevalence difference		Between -99.99 and 99.99

The four values required for a sample size calculation are:

- Two-sided confidence level - most individuals would choose a 95% confidence interval, but a different confidence interval could be entered.
- Power - most individuals choose a power value of 80% or 90%, however, any power level can be entered.
- Ratio of Unexposed to Exposed in sample - place the desired ratio of unexposed individuals to exposed individuals. If there are to be an equal number of unexposed and exposed, then enter the value of 1.0 ; if there are to be twice as many unexposed as exposed, enter the value of 2.0 . Any other ratio can be entered.
- Percent of Unexposed with Outcome - enter an estimate of the percentage of unexposed individuals that will develop (or have) the outcome of interest. For example, in a randomized control trial, you would estimate the percentage of those in the comparison group that will develop the outcome of interest during the trial. In a cohort study, enter the percentage of unexposed individuals who will develop the outcome of interest during the study. In a crosssectional study, enter the estimated prevalence of disease among the unexposed.

The user has the choice of entering an odds ratio $\boldsymbol{o r}$ the percent of exposed with the outcome of interest or the risk (prevalence) ratio or the risk (prevalence) difference - just enter one of these. The results using the default values for a risk ratio of 2 are below:

Sample Size for Cross-Sectional \& Cohort Studies \& Clinical Trials

Two-sided significance level(1-alpha): 95
Power(1-beta, \% chance of detecting): 80
Ratio of sample size, Unexposed/Exposed: 1
Percent of Unexposed with Outcome: 5
Percent of Exposed with Outcome: 10
Odds Ratio: 2.1
Risk/Prevalence Ratio: 2
Risk/Prevalence difference: 5

	Kelsey	Fleiss	Fleiss with CC
Sample Size -	437	436	475
Exposed Sample Size- Nonexposed	437	436	475
Total sample size:	874	872	950

References

Kelsey et al., Methods in Observational Epidemiology 2nd Edition, Table 12-15
Fleiss, Statistical Methods for Rates and Proportions, formulas 3.18 \&3.19
$\mathrm{CC}=$ continuity correction
The sample size formula for the method described in Kelsey et. al. is:

$$
n_{1}=\frac{\left(Z_{w 2}+Z_{u p}\right)^{2} \bar{p} \bar{q}(r+1)}{r\left(P_{1}-p_{2}\right)^{2}}
$$

and

$$
\mathrm{n}_{2}=\mathrm{r} \mathrm{n}_{1}
$$

where
$\boldsymbol{n}_{\mathbf{1}}=$ number of exposed
$\boldsymbol{n}_{\mathbf{2}}={ }_{\text {number of unexposed }}$
$Z_{m / 2}={ }_{\text {standard normal deviate for two-tailed test based on alpha level (relates to the confidence }}$ interval level)
$\boldsymbol{Z}_{\boldsymbol{\rho}}={ }_{\text {standard normal deviate for one-tailed test based on beta level (relates to the power level) }}$
$\mathrm{r}=$ ratio of unexposed to exposed
$\mathrm{p}_{1}=$ proportion of exposed with disease and $\mathrm{q}_{1}=1-\mathrm{p}_{1}$
$\mathrm{p}_{2}=$ proportion of unexposed with disease and $\mathrm{q}_{2}=1-\mathrm{p}_{2}$

$$
\overline{\mathbf{p}}=\frac{\mathbf{p}_{1}+\boldsymbol{P}_{2}}{\mathbf{r}+1} \text { and } \overline{\mathbf{q}}=\mathbf{1}-\overline{\mathbf{p}}
$$

The sample size formula without the correction factor by Fleiss is:

$$
\begin{aligned}
& n_{1}=\frac{\left[Z_{w 2} \sqrt{(\mathrm{r}+1) \overline{\mathrm{pq}}}+Z_{p} p \sqrt{p_{1} q_{1}+p_{2} q_{2}}\right]^{2}}{r\left(p_{1}-p_{2}\right)^{2}} \\
& n_{2}=r n_{1}
\end{aligned}
$$

For the Fleiss method with the correction factor, take the sample size from the uncorrected sample size formula and place into the following formula:

$$
\begin{aligned}
& n_{\text {lcx }}=\frac{n_{1}}{4}\left[1+\sqrt{1+\frac{2(r+1)}{n_{1} r\left|p_{2}-p_{1}\right|}}\right] \\
& n_{\text {7II }}=r n_{\text {lI }}
\end{aligned}
$$

When the input is provided as an odds ratio (OR) rather than the proportion of exposed with disease, the proportion of exposed with disease is calculated as:

$$
p_{1}=\frac{p_{2} O R}{1+p_{2}(O R-1)}
$$

When the input is provided as a risk (or prevalence) ratio (RR) rather than the proportion of exposed with disease, the proportion of exposed with disease is calculated as:

$$
p_{1}=p_{2} R R
$$

When the input is provided as a risk (or prevalence) difference (RD) rather than the proportion of exposed with disease, the proportion of exposed with disease is calculated as:

$$
p_{1}=R D+p_{2}
$$

References

Kelsey JL, Whittemore AS, Evans AS, Thompson WD. Methods in Observational Epidemiology. Oxford University Press, 1996.

Fleiss JL. Statistical Methods for Rates and Proportions. John Wiley \& Sons, 1981.

Updated Feb 16 2007: changed the "-" sign in the numerator of the Fleiss formula without a correction factor to "+".

